An Algorithm for Computing the Multigraded Hilbert Depth of a Module
نویسندگان
چکیده
A method for computing the multigraded Hilbert depth of a module was presented in [16]. In this paper we improve the method and we introduce an effective algorithm for performing the computations. In a particular case, the algorithm may also be easily adapted for computing the Stanley depth of the module. We further present interesting examples which were found with the help of an experimental implementation of the algorithm [17]. Thus, we completely solve several open problems proposed by Herzog in [12].
منابع مشابه
Dilations for $C^ast$-dynamical systems with abelian groups on Hilbert $C^ast$-modules
In this paper we investigate the dilations of completely positive definite representations of (C^ast)-dynamical systems with abelian groups on Hilbert (C^ast)-modules. We show that if ((mathcal{A}, G,alpha)) is a (C^ast)-dynamical system with (G) an abelian group, then every completely positive definite covariant representation ((pi,varphi,E)) of ((mathcal{A}, G,alpha)) on a Hilbert ...
متن کاملMultigraded Regularity: Syzygies and Fat Points Jessica Sidman and Adam Van Tuyl
The Castelnuovo-Mumford regularity of a graded ring is an important invariant in computational commutative algebra, and there is increasing interest in multigraded generalizations. We study connections between two recent definitions of multigraded regularity with a view towards a better understanding of the multigraded Hilbert function of fat point schemes in P n1 × · · · × P k . Introduction L...
متن کامل$G$-dual Frames in Hilbert $C^{*}$-module Spaces
In this paper, we introduce the concept of $g$-dual frames for Hilbert $C^{*}$-modules, and then the properties and stability results of $g$-dual frames are given. A characterization of $g$-dual frames, approximately dual frames and dual frames of a given frame is established. We also give some examples to show that the characterization of $g$-dual frames for Riesz bases in Hilbert spaces is ...
متن کاملResults on Hilbert coefficients of a Cohen-Macaulay module
Let $(R,m)$ be a commutative Noetherian local ring, $M$ a finitely generated $R$-module of dimension $d$, and let $I$ be an ideal of definition for $M$. In this paper, we extend cite[Corollary 10(4)]{P} and also we show that if $M$ is a Cohen-Macaulay $R$-module and $d=2$, then $lambda(frac{widetilde{I^nM}}{Jwidetilde{I^{n-1}M}})$ does not depend on $J$ for all $ngeq 1$, where $J$ is a minimal ...
متن کاملFrames in super Hilbert modules
In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 23 شماره
صفحات -
تاریخ انتشار 2014